

| Form:            | Form Number                                     | EXC-01-02-02A    |  |  |  |
|------------------|-------------------------------------------------|------------------|--|--|--|
| Comme Coullebook | Lesus Number and Date                           | 2/3/24/2022/2963 |  |  |  |
| Course Synabus   | Issue Number and Date                           | 05/12/2022       |  |  |  |
|                  | Number and Date of Revision or Modification     |                  |  |  |  |
|                  | Deans Council Approval Decision Number          | 2/3/24/2023      |  |  |  |
|                  | The Date of the Deans Council Approval Decision | 23/01/2023       |  |  |  |
|                  | Number of Pages                                 | 06               |  |  |  |

| 1.  | Course Title                             | Classical Electrodynamics-2                                                |
|-----|------------------------------------------|----------------------------------------------------------------------------|
| 2.  | Course Number                            | 0332953                                                                    |
| 2   | <b>Credit Hours (Theory, Practical)</b>  | (3,0)                                                                      |
| 5.  | <b>Contact Hours (Theory, Practical)</b> | (3,0)                                                                      |
| 4.  | Prerequisites/ Corequisites              |                                                                            |
| 5.  | Program Title                            |                                                                            |
| 6.  | Program Code                             | Ph.D. in Physics                                                           |
| 7.  | School/ Center                           | Science                                                                    |
| 8.  | Department                               | Physics                                                                    |
| 9.  | Course Level                             | PhD                                                                        |
| 10. | Year of Study and Semester (s)           | 2018, Spring                                                               |
| 11  | Other Department(s) Involved in          |                                                                            |
| 11. | Teaching the Course                      |                                                                            |
| 12. | Main Learning Language                   |                                                                            |
| 13. | Learning Types                           | $\boxtimes$ Face to face learning $\square$ Blended $\square$ Fully online |
| 14. | <b>Online Platforms(s)</b>               | □Moodle □Microsoft Teams                                                   |
| 15. | Issuing Date                             | 30/5/2018                                                                  |
| 16. | <b>Revision Date</b>                     | 28/1/2025                                                                  |

## **17. Course Coordinator:**

Name: Mohammad Hussein

Contact hours: Sunday, Tuesday 13.30-14.30

Office number: 08

Email: m.hussein@ju.edu.jo

Phone number: 22023



#### **18. Other Instructors:**

| Name:          |
|----------------|
| Office number: |
| Phone number:  |
| Email:         |
| Contact hours: |
| Name:          |
| Office number: |
| Phone number:  |
| Email:         |
| Contact hours: |

#### **19. Course Description:**

This course aims to provide a comprehensive analysis of the electromagnetic radiation produced by localized oscillating systems and accelerating point charges, including both free and bound charges. The curriculum is structured to ensure a balanced emphasis on grasping the fundamental aspects of electromagnetic theory while also developing expertise in highly advanced mathematical techniques. The course is designed for first-year graduate students who have successfully completed the Classical Electrodynamics-1 course, PHY 0362753.

- **20. Program Intended Learning Outcomes:** (To be used in designing the matrix linking the intended learning outcomes of the course with the intended learning outcomes of the program)
  - 1. To be able to demonstrate an advanced and comprehensive understanding of core physics concepts and specialized knowledge in a chosen field of research, contributing to the frontier of physics.
  - 2. To be able to develop and execute independent, original research projects that address complex scientific problems, advancing theoretical and experimental physics.
  - 3. To be able to apply advanced mathematical and computational techniques to analyze complex physical phenomena and critically evaluate scientific literature and experimental results.
  - 4. To be able to effectively communicate complex physics concepts, research findings, and their significance through academic writing, presentations, and public outreach.
  - 5. To be able to adhere to high ethical standards and professional responsibility in conducting research, including data integrity, ethical treatment of subjects, and the responsible use of resources.



- 6. To be able to demonstrate leadership and collaborative skills within multidisciplinary teams, contributing to the development of new scientific knowledge and promoting knowledge-sharing across disciplines.
- 7. To be able to cultivate the ability to adapt to new scientific advancements and continuously engage in professional development to contribute to innovation in the field of physics.
- 8. To be able to master experimental and computational techniques relevant to the research field, demonstrating competency in operating and developing specialized physics instrumentation and software.
- **21. Course Intended Learning Outcomes:** (Upon completion of the course, the student will be able to achieve the following intended learning outcomes)
  - 1. Solve for the vector potential in the Lorenz gauge, assuring the causal behavior of the fields.
  - 2. Set up three spatial regions of interest for the fields of localized oscillating sources.
  - 3. Provide a complete derivation for the power radiated by electric dipole sources.
  - 4. Provide a complete derivation for the power radiated by magnetic dipole sources.
  - 5. Provide a complete derivation for the angular distribution of the power radiated by electric quadrupole sources, and the total power as well.
  - 6. Calculate the angular distribution for the power radiated by short center-fed linear antenna.
  - 7. Establish the multipole expansion of the EM fields using the vector spherical harmonic as a basis.
  - 8. Determine the vector multipole expansion of EM fields.
  - 9. Derive the general formulae for both electric and magnetic multipole coefficients.
  - 10. Use the multipole expansion to calculate the power radiated by a center-fed linear antenna.
  - 11. Review the key aspects of the kinematics and dynamics of the special theory.
  - 12. Investigate the covariance of electrodynamics.
  - 13. Derive thoroughly the Lienard-Wiechert fields for a point charge.
  - 14. Derive Larmor's formula for an accelerated charge, and its relativistic generalization; Lienard's formula.
  - 15. Analyze the angular distribution of radiation emitted by an accelerated charge.
  - 16. Derive Thomson cross section, and compare it with Rayleigh cross section.
  - 17. Derive Abraham-Lorentz equation for the radiation reaction effects.
  - 18. Determine the level shift and the line width for a radiation oscillator.
  - 19. Investigate the density effect in energy loss and the emission of Cherenkov radiation.

| Course | rse The learning levels to be achieved |               |              |              |            |          |  |  |  |
|--------|----------------------------------------|---------------|--------------|--------------|------------|----------|--|--|--|
| ILOs   | Remembering                            | Understanding | Applying     | Analysing    | evaluating | Creating |  |  |  |
| 1      |                                        | $\checkmark$  | $\checkmark$ | $\checkmark$ |            |          |  |  |  |
| 2      |                                        | $\checkmark$  | ~            | $\checkmark$ |            |          |  |  |  |
| 3      |                                        | $\checkmark$  | $\checkmark$ | $\checkmark$ |            |          |  |  |  |



## الجامعة الاردنية

| 4  | $\checkmark$ | ✓ | $\checkmark$ |  |
|----|--------------|---|--------------|--|
| 5  | ×            | ~ | $\checkmark$ |  |
| 6  | ✓            | ~ | ✓            |  |
| 7  | ×            | ✓ | $\checkmark$ |  |
| 8  | ✓            | ~ | √            |  |
| 9  | √            | ~ | √            |  |
| 10 | √            | ~ | √            |  |
| 11 | √            | ~ | √            |  |
| 12 | ✓            | ~ | √            |  |
| 13 | ✓            | ~ | √            |  |
| 14 | ✓            | ✓ | √            |  |
| 15 | ✓            | ✓ | √            |  |
| 16 | √            | ✓ | √            |  |
| 17 | √            | ✓ | √            |  |
| 18 | ✓            | ✓ | √            |  |
| 19 | ✓            | ✓ | ✓            |  |
|    |              |   |              |  |

# 27. The matrix linking the intended learning outcomes of the course with the intended learning outcomes of the program:

| Program / | ILO (1)      | ILO (2)      | ILO (3)      | ILO (4)      | ILO (5) | ILO (6) | ILO (7) | ILO (8) |
|-----------|--------------|--------------|--------------|--------------|---------|---------|---------|---------|
| ILOs      |              |              |              |              |         |         |         |         |
|           |              |              |              |              |         |         |         |         |
|           |              |              |              |              |         |         |         |         |
| / Course  |              |              |              |              |         |         |         |         |
| ILOs      |              |              |              |              |         |         |         |         |
| 1         | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |         |         |         |         |
|           |              |              |              |              |         |         |         |         |



# الجامعة الاردنية

| 2  | ✓                     | ✓                     | ✓                     | ✓                     |   |   |  |
|----|-----------------------|-----------------------|-----------------------|-----------------------|---|---|--|
| 3  | ✓                     | ✓                     | ~                     | ✓                     |   |   |  |
| 4  | ~                     | ✓                     | ✓                     | ✓                     |   |   |  |
| 5  | <ul> <li>✓</li> </ul> | ✓                     | ✓                     | ✓                     |   |   |  |
| 6  | <ul> <li>✓</li> </ul> | ✓                     | ✓                     | <ul> <li>✓</li> </ul> |   |   |  |
| 7  | ✓                     | ✓                     | <ul> <li>✓</li> </ul> | <ul> <li>✓</li> </ul> |   |   |  |
| 8  | <ul> <li>✓</li> </ul> | ✓                     | <ul> <li>✓</li> </ul> | <ul> <li>✓</li> </ul> |   |   |  |
| 9  | ✓                     | ✓                     | <ul> <li>✓</li> </ul> | <ul> <li>✓</li> </ul> |   |   |  |
| 1  | ✓                     | ✓                     | ✓                     | ✓                     |   |   |  |
| 11 | ✓                     | ✓                     | <ul> <li>✓</li> </ul> | <ul> <li>✓</li> </ul> |   |   |  |
| 12 | ✓                     | ✓                     | ✓                     | ✓                     |   |   |  |
| 13 | ✓                     | ✓                     | <ul> <li>✓</li> </ul> | <ul> <li>✓</li> </ul> |   |   |  |
| 14 | ✓                     | ✓                     | <ul> <li>✓</li> </ul> | <ul> <li>✓</li> </ul> |   |   |  |
| 15 | <ul> <li>✓</li> </ul> | ✓                     | <ul> <li>✓</li> </ul> | <ul> <li>✓</li> </ul> |   |   |  |
| 16 | ✓                     | ✓                     | <ul> <li>✓</li> </ul> | <ul> <li>✓</li> </ul> |   |   |  |
| 17 | <ul> <li>✓</li> </ul> | ✓                     | <ul> <li>✓</li> </ul> | <ul> <li>✓</li> </ul> |   |   |  |
| 18 | ✓                     | ✓                     | <ul> <li>✓</li> </ul> | <ul> <li>✓</li> </ul> |   |   |  |
| 19 | <ul> <li>✓</li> </ul> | <ul> <li>✓</li> </ul> | ~                     | <ul> <li>✓</li> </ul> |   |   |  |
|    |                       | 1                     | 1                     |                       | 1 | 1 |  |

## 2°. Topic Outline and Schedule:

| Week | Lecture | Topic                                         | ILO/s Linked to the Topic | Learning Types<br>(Face to Face/ Blended/ Fully<br>Online) | Platform Used | Synchronous / Asynchronous<br>Lecturing | <b>Evaluation Methods</b> | Learning Resources |
|------|---------|-----------------------------------------------|---------------------------|------------------------------------------------------------|---------------|-----------------------------------------|---------------------------|--------------------|
|      | 1.1     | -Solve for the vector potential in the Lorenz | 1,2                       |                                                            |               |                                         |                           |                    |
| 1    | 1.2     | gauge, assuring the causal behavior of the    |                           |                                                            |               |                                         |                           |                    |
|      | 1.3     | fields.                                       |                           |                                                            |               |                                         |                           |                    |



| 1  | 1    |                                                   | 1   | 1    | 1 |  |
|----|------|---------------------------------------------------|-----|------|---|--|
|    |      | -Set up three spatial regions of interest for the |     |      |   |  |
|    |      | fields of localized oscillating sources.          |     |      |   |  |
|    | 2.1  | -Provide a complete derivation for the power      | 3,4 |      |   |  |
|    | 2.2  | radiated by electric dipole sources.              |     |      |   |  |
| 2  |      | -Provide a complete derivation for the power      |     |      |   |  |
|    | 2.3  | radiated by magnetic dipole sources.              |     |      |   |  |
|    | 2.1  |                                                   | 5   |      |   |  |
| 2  | 3.1  | Provide a complete derivation for the angular     | 5   |      |   |  |
| 3  | 3.2  | distribution of the power radiated by electric    |     |      |   |  |
|    | 3.3  | quadrupole sources, and the total power as well.  | 6   | <br> |   |  |
|    | 4.1  |                                                   | 6   |      |   |  |
| 4  | 4.2  | Calculate the angular distribution for the power  |     |      |   |  |
|    | 4.3  | radiated by short center-fed linear antenna.      |     |      |   |  |
|    | 5.1  | Establish the multipole expansion of the EM       | 7   |      |   |  |
| 5  | 5.2  | fields using the vector spherical harmonic as a   |     |      |   |  |
|    | 5.3  | basis.                                            |     |      |   |  |
|    | 6.1  | -Determine the vector multipole expansion of      | 8,9 |      |   |  |
| 6  | 6.2  | EM fields.                                        |     |      |   |  |
| 0  | 63   | -Derive the general formulae for both electric    |     |      |   |  |
|    | 0.5  | and magnetic multipole coefficients.              |     |      |   |  |
|    | 7.1  |                                                   | 10  |      |   |  |
| 7  | 7.2  | Use the multipole expansion to calculate the      |     |      |   |  |
|    | 7.3  | power radiated by a center-fed linear antenna.    |     |      |   |  |
|    | 8.1  | -Review the key aspects of the kinematics and     | 11, |      |   |  |
| 8  | 8.2  | dynamics of the special theory.                   | 12  |      |   |  |
|    | 8.3  | -Investigate the covariance of electrodynamics.   |     |      |   |  |
|    | 9.1  |                                                   | 13  |      |   |  |
| 9  | 9.2  | Derive thoroughly the Lienard-Wiechert fields     |     |      |   |  |
|    | 9.3  | for a point charge.                               |     |      |   |  |
|    | 10.1 | Derive Larmor's formula for an accelerated        | 14  |      |   |  |
|    | 10.2 | charge and its relativistic generalization:       |     |      |   |  |
| 10 | 10.3 | Lienard's formula                                 |     |      |   |  |
|    | 11 1 | Analyze the angular distribution of radiation     | 15  |      |   |  |
| 11 | 11.1 | amitted by an accelerated charge                  | 10  |      |   |  |
| 11 | 11.2 | ennitied by an accelerated charge.                |     |      |   |  |
|    | 12.1 |                                                   | 16  |      |   |  |
| 10 | 12.1 | Derive Themson errors costion and commons it      | 10  |      |   |  |
| 12 | 12.2 | Derive Thomson cross section, and compare it      |     |      |   |  |
|    | 12.5 | with Kayleign cross section.                      | 17  | <br> |   |  |
| 10 | 13.1 |                                                   | 1/  |      |   |  |
| 13 | 13.2 | Derive Abraham-Lorentz equation for the           |     | <br> |   |  |
|    | 13.3 | radiation reaction effects.                       |     | <br> |   |  |
| 14 | 14.1 |                                                   | 18  |      |   |  |



|    | 14.2 | Determine the level shift and the line width for  |    |  |  |  |
|----|------|---------------------------------------------------|----|--|--|--|
|    | 14.3 | a radiation oscillator.                           |    |  |  |  |
|    | 15.1 |                                                   | 19 |  |  |  |
| 15 | 15.2 | Investigate the density effect in energy loss and |    |  |  |  |
|    | 15.3 | the emission of Cherenkov radiation.              |    |  |  |  |

#### 24. Evaluation Methods:

Opportunities to demonstrate achievement of the ILOs are provided through the following assessment methods and requirements:

| Evaluation<br>Activity | Mar<br>k | Topic(<br>s) | ILO/s Linked to the Evaluation<br>activity          | Period<br>(Week) | Platfor<br>m |
|------------------------|----------|--------------|-----------------------------------------------------|------------------|--------------|
| First Exam             | 30       |              | 1,2,3,4,5,6,7,8,9,10                                | 8                | On<br>campus |
| Second Exam            | 30       |              | 11,12,13,14,15,16                                   | 13               | On<br>campus |
| Final Exam             | 40       |              | 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,<br>17,18,19 | 15               | On<br>campus |

### 2°. Course Requirements:

(e.g.: students should have a computer, internet connection, webcam, account on a specific software/platform...etc.):

N/A

## **27.** Course Policies:

- A- Attendance policies: According to JU by-laws.
- B- Absences from exams and submitting assignments on time: According to JU by-laws.

C- Health and safety procedures: N/A

D- Honesty policy regarding cheating, plagiarism, misbehavior: According to JU by-laws.

E- Grading policy: According to JU by-laws.

F- Available university services that support achievement in the course: N/A



#### 2<sup>v</sup>. References:

A- Required book(s), assigned reading and audio-visuals:

Text:

1. Classical Electrodynamics, by J. D. Jackson, 3<sup>rd</sup> edition, John Wiley & Sons 1999, ISBN 0-471-30932-X.

2. Classical Electrodynamics, by K. Milton & J. Schwinger, 2<sup>nd</sup> edition, CRC Press 2024, ISBN: 978-0-367-50207-2.

B- Recommended books, materials, and media:

References: Suggested titles include, but are not limited to: -Modern Electrodynamics, by A. Zangwill, 1<sup>st</sup> edition, Cambridge University Press 2013, ISBN 978-1-108-47322-4.

-Principles of Electrodynamics, by Melvin Schwartz, 1<sup>st</sup> edition, Dover Publications 1987, ISBN 10:0-486-65493-1.

-Classical Electromagnetism in a Nutshell, by A. Garg, 1<sup>st</sup> edition, Princeton University Press 2012, ISBN-13: 978-0-691-13018-7.

## 2<sup>A</sup>. Additional information:

| Name of the Instructor or the Course Coordinator:<br>Mohammad Hussein | Signature: | Date:<br>28/1/2025 |
|-----------------------------------------------------------------------|------------|--------------------|
| Name of the Head of Quality Assurance<br>Committee/ Department        | Signature: | Date:              |
| Name of the Head of Department                                        | Signature: | Date:              |
| Name of the Head of Quality Assurance<br>Committee/ School or Center  | Signature: | Date:              |
| Name of the Dean or the Director                                      | Signature: | Date:              |